翻訳と辞書 |
Chowla–Selberg formula : ウィキペディア英語版 | Chowla–Selberg formula In mathematics, the Chowla–Selberg formula is the evaluation of a certain product of values of the Gamma function at rational values in terms of values of the Dedekind eta function at imaginary quadratic irrational numbers. The result was essentially found by and rediscovered by . ==Statement==
In logarithmic form, the Chowla–Selberg formula states that in certain cases the sum : can be evaluated using the Kronecker limit formula. Here χ is the quadratic residue symbol modulo ''D'', where ''−D'' is the discriminant of an imaginary quadratic field. The sum is taken over 0 < ''r'' < ''D'', with the usual convention χ(''r'') = 0 if ''r'' and ''D'' have a common factor. The function η is the Dedekind eta function, and ''h'' is the class number, and ''w'' is the number of roots of unity.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Chowla–Selberg formula」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|